Information retrieval models

• Documents and queries are characterized by a number of index terms
 – Based on a query (representation of an information problem), guess the relevance of each document
 – Rank documents in the order of relevance
 – Return the most relevant documents
• The effectiveness of an IR system depends on the ability of the document representation to capture the “meaning” of the documents with respect to the users’ needs

Query methods

• Browsing
• Adhoc retrieval
 – Document collection remains stable, users try to find relevant documents using adhoc queries
• Filtering
 – User queries remain stable as “profiles”
 – As new documents are added they are sent to users who might be interested in these documents
 – Profiles can be constructed on keyword queries, terms occurring in documents retrieved by users
Information retrieval model

• An information retrieval model is a quadruple $<D, Q, F, R(q_i, d_j)>$ where
 – D is a set composed of logical views (or representations) for the documents in the collection
 – Q is a set composed of logical views (or representations) for the user information needs called “queries”
 – F is a framework for modeling document representations, queries and their relationships
 – $R(q_i, d_j)$ is a ranking function which associates a real number with a query q_i in Q and a document representation d_j in D.

Documents

• A document is a collection of words
• An index term is an “important” word that
 – Possess a meaning, such as a noun and has been simplified (stop words, stemming)
 – Distinguishes the document from the others
• The set of all index terms for a document collection is given by $\{k_1, \ldots, k_t\}$
• A document d_j in IR is usually given by a vector:
 $d_j = <w_{i,j}, \ldots, w_{t,j}>$ where $w_{i,j}$ is the weight of term k_i in document d_j.
Documents

- Assumption:
 - The occurrence of a term t_1 in a document is completely independent of the occurrence of another term t_2 in the same document
 - Not true in general, but does not appear to have a big impact on the retrieval effectiveness

Boolean model for retrieval

- A Boolean query contains query terms connected by logical connectives and, or, not.
- A Boolean query is interpreted as a set membership function.
- Query:
 - $Q =$ “UFO” return documents that contain the word “UFO”
 - $Q =$ “UFO Sightings” AND “Albany” return documents that contain the phrase “UFO Sightings” and the word “Albany”
Boolean model for retrieval

- \(Q = k_a \) and \((k_b \text{ or not } k_c)\) return documents
 - that contain the word \(k_a \) and
 - either contain \(k_b \) or does not contain \(k_c \)
- In the boolean model, each document either
 - satisfies the query, then we return 1 (relevant)
 - does not satisfy the query, then we return 0 (irrelevant)
- Documents can be represented as a vector of 0s and 1s
 - 1 if a term appears and 0 if it does not appear

Vector model

- In the vector model, both queries and documents are weighted vectors
- The relevance of a document to a query is given by the “cosine of the angle” between a document vector and a query vector

\[
\text{Sim}(d_j, q) = \frac{\sum_{i=1}^{t} (w_{ij} \cdot w_{iq})}{\sqrt{\sum_{i=1}^{t} (w_{ij}^2) \cdot \sum_{i=1}^{t} (w_{iq}^2)}}
\]

\[\cos(\Theta) = \text{Sim}(d_j, q)\]
Vector model

• The importance of a term in a document depends on:
 – How important it is for identifying the content of this document (term frequency)
 \[f_{i,j} = \frac{\text{freq}_{i,j}}{\text{max}_i \text{ freq}_{i,j}} \]
 frequency of term \(k_i\) in document \(d_j\) versus
 the highest frequency of a term in the same document
 – How important it is for identifying the document from the others (document frequency)
 \[\text{idf}_i = \log \frac{N}{n_i} \]
 total number of documents versus
 total number of documents containing this term
 The term weight is given by \(f_{i,j} \times \text{idf}_i\)

• A user query consists of a number of terms
• How do we assign weights to query terms:

\[w_{i,q} = (.5 + (.5 \times \text{freq}_{i,q} / \text{max}_i \text{ freq}_{i,q})) \times \log \frac{N}{n_i} \]
Fuzzy set model

- A fuzzy set has a membership function, $\mu_A(u)$, that returns a real number $0 \leq \mu(A) \leq 1$.
 - If $\mu_A(u) = 1$, then A is definitely a member
 - If $\mu_A(u) = 0$, then A is definitely not a member
- Fuzzy sets use a number of pre-set functions to determine the meaning of various connectives
 - $\mu_{\text{not } A}(u) = 1 - \mu_A(u)$
 - $\mu_{A \text{ or } B}(u) = \max \{ \mu_A(u), \mu_B(u) \}$ or $\mu_A(u) + \mu_B(u)$
 - $\mu_{A \text{ and } B}(u) = \min \{ \mu_A(u), \mu_B(u) \}$ or $\mu_A(u) * \mu_B(u)$

Fuzzy set model

- Determine the term-to-term correlation in a collection of documents between terms k_i and k_j

\[c_{i,j} = \frac{n_{i,j}}{n_i + n_j - n_{i,j}} \]
where n_x is the number of documents containing term k_x

Then, compute $\mu_{i,j} = 1 - (\text{product}_{k_l \text{ in } d_j} (1 - c_{i,j}))$
the degree of membership of document d_j to term k_i
Fuzzy queries

- Given a query \(q = k_i \), then similarity of a document \(d_j \) to \(q \) is given by \(\mu_{i,j} \).
- Given a query \(q = k_i \) AND \(k_l \), the similarity of a document \(d_j \) to query \(q \) is given by \(\mu_{i,j} \ast \mu_{l,j} \) (or using any appropriate operator for AND).
- Similarly for OR (use + or max).
- Given a complex query: (A and (not B)) or (C).

```
A

B

C
```

Extended Boolean Model

- Suppose, you are given a query containing keywords \(k_x \) and \(k_y \).
- Assume, the weight of terms \(k_x \) and \(k_y \) in document \(d \) are given by \((x_1, y_1)\).
- Given query “\(k_x \) OR \(k_y \)”, we would like to be as far away from \((0,0)\) as possible hence maximize distance\(((0,0), (x_1, y_1))\).
- Given query “\(k_x \) AND \(k_y \)”, we would like to be as close to \((1,1)\) as possible hence maximize \(1 - \text{distance}((1,1), (x_1, y_1))\).
Extended Boolean Model

• Under this model:
 – $\text{Sim}(\text{or-query}, d) = \sqrt{\frac{x^2 + y^2}{2}}$
 – $\text{Sim}(\text{or-query}, d) = 1 - \sqrt{\frac{(1-x)^2 + (1-y)^2}{2}}$

• Suppose now connectives and/or have a degree “p”
 – I.e. or-query: $k_1 \text{ OR}^p k_2 \text{ OR}^p \ldots \text{ OR}^p k_m$
 – $\text{sim}(\text{or-query}, d) = \text{power}((x_1^p + x_2^p + \ldots + x_m^p)/m), 1/p)$
 – I.e. and-query: $k_1 \text{ AND}^p k_2 \text{ AND}^p \ldots \text{ AND}^p k_m$
 – $\text{sim}(\text{and-query}, d) = 1 - \text{power}((1-x_1^p + (1-x_2^p + \ldots + (1-x_m)^p)/m), 1/p)$

Given p-norms, we have the following properties:

• If $p = 1$, then $\text{sim}(\text{or-query}) = \text{sim}(\text{and-query}) = (x_1 + \ldots + x_m)/m$
 – Reduces to arithmetic mean

• If $p = \infty$, then $\text{sim}(\text{or-query}) = \text{min}(x_k)$ and $\text{sim}(\text{and-query}) = \text{max}(x_k)$